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:tailed theoretical description of the steady flow a t  high Reync Is number 
about a circular cylinder is given by Smith (1979). It appears to give a satisfactory 
description of much of the flow field. Numerical solutions for this flow computed by 
Fornberg (1985) are in conflict with some aspects of Smith’s model. 

An acknowledged weak point in Smith’s argument is the lack of a detailed flow 
for the interior of the eddies, particularly with respect to their rear closure. This paper 
discusses this aspect of the flow with particular emphasis on the vorticity distribution 
and with the aid of a solution of the Navier-Stokes equations which is valid at the 
rear of the eddies. As a result an interpretation of Fornberg’s results is possible. The 
self-induced velocity of translation of the vorticity distribution is considered and 
discussed with reference to the flow as Re + 00. 

1. Introduction 
The steady flow at high Reynolds number about a circular cylinder is an academic 
problem. Real high-Reynolds-number flows are unsteady. On the other hand, a full 
understanding of this academic problem should provide valuable insight into other 
real flows. Smith (1979) summarizes the history of the subject and gives the most 
detailed model of the flow field. Particular attention is paid to the separation region 
on the cylinder’s surface, but a full discussion is given of the rest of the flow field 
since the effect of the eddies is to make a significant correction to the value of the 
free stream in the vicinity of the cylinder. To a first approximation Smith describes 
the eddies as a slender ellipse of stagnant fluid. A weak point in the argument is the 
absence of a model for the flow at the rear of the eddy. An exact solution of the 
Navier-Stokes equations which seems to be relevant to that region is given here. 

Fornberg (1980, 1986) presents numerical solutions for the flow about a circular 
cylinder for Reynolds numbers up to 160 (Fornberg 1980) and 300 (Fornberg 1985).t 
Up to Re = 160 there is reasonable agreement with Smith’s model; in particular the 
eddy length L and width W vary like a: Re and Q Re+ respectively, see figure 1. However, 
as is clear in figure 1 the computational results for Re > 160 disagree with Smith’s 
hypothesis. The eddy width begins to increase rapidly with Reynolds number. 

This note discusses the vorticity in the flow field on an order-of-magnitude basis. 
The eddy closure, which eluded Smith, is described in terms of an exact solution of 
the Naviedtokes equation. The discussion is based on vorticity and continuity. Near 
the cylinder the Kirchhoff free-streamline model, as extended by Smith, is used as 
a starting point. However, the discussion leads to a descriptive model of the eddy 

t We follow Smith and use Re = aU/v, where U is the flow velocity, a the diameter of the cylinder 
and v the kinematic viscosity; many other authors and Fornberg use R = 2aU/v.  
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FIGURE 1. Variation of (a) eddy half-width W, ( b )  eddy length L and (c) the ratio L/ W with Reynolds 
number. Circles are Fornberg’s (1980) and (1985) results. The continuous lines are Smith’s (1979) 
results: W = 0.233 Ref, L = 0.34 Re and Ll W = 1.46 Re$. 

flow which suggests that LIW may be closer to O(1) than to O(Re4) aa in Smith’s 
account. The description is in accord with Fornberg’s results. The limit as Re+ 00 

is briefly discussed. 
At  the stage of final corrections to this paper, the author became aware of another 

proposal for the flow field by Smith (1985). Smith’s new model is based on large strong 
eddies, bounded by vortex sheets, as described by Sandovskii (1971). There are 
differences from the model described in this paper, many of which are questions of 
interpretation and differences of opinion which are unlikely to be resolved until 
further analysis and computation are performed. 
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2. Vorticity in the flow 
All vorticity in the eddy system and wake is fed by the shear layers separating 

from the cylinder’s surface. We are not concerned here with details of separation and 
it appears that Smith’s (1979) detailed account is appropriate. The shear-layer width 
grows with distance s like Red(as)k If the flow near the rear of the cylinder is no more 
than that induced by the entrainment into the shear layer, then each shear layer 
follows an .initially parabolic path, as described by Smith. 

The shear layers entrain fluid on both sides. The velocity component normal to 
a layer at its surface is O[URe-t(a/s)i]. At a distance s from the cylinder the 
accumulated entrained volume flux is thus O[ U Ref(as)t] .  All the fluid entrained into 
the shear layers from the eddy must be returned to the eddy since the flow is steady. 
For parabolic growth of distance between the layers this implies a mean velocity in 
the eddy toward the cylinder of O(URe-t). Since entrainment is from both sides of 
the shear layer the streamline bounding the eddy is near the centre of the shear layer. 

In  a shear layer the vorticity has its maximum at the centre and is of order (velocity 
difference)/(width of shear layer). Thus the shear-layer vorticity is 

O[ U Ref/ (as)t]. 

If the eddy has o( U )  velocities, then as the shear layer reaches the closure of the eddy 
the vorticity is 

This vorticity is being fed into the eddy, and once in it contributes to determining 
the eddy’s shape. 

An alternative possibility is that there is sufficient vorticity in the eddy that the 
fluid velocity just inside it approaches that of the free stream, and the shear layer 
is eliminated. In  this case a typical vorticity in the eddy and on the bounding 
streamline is just 

O ( U / W ) .  (2) 

There are three possibilities: 
(i) the shear layer persists all the way to the eddy closure; 
(ii) the shear layer is eliminated part way along the eddy boundary; 
(iii) there is no shear layer and there are 0(1) velocities in the eddies. This is the 

case appropriate for Prandtl-Batchelor eddies of constant vorticity . 
In  all three cases the dividing streamline approaches the rear stagnation point in 

fluid of appreciable vorticity. As a first approximation it is reasonable to assume the 
vorticity distribution to be constant within an O(a) distance of that streamline, since 
for the caae (i) i t  is probably close to the maximum of the vorticity distribution across 
the layer; in case (ii) and (iii) there is likely to be little vorticity variation anyway 
because vorticity will have diffused into the fluid which travels on into the wake. 
Thus a solution is needed for a stagnation point between the two areas with vorticity 
of opposite sign, around the opposing streamlines. 

Such a solution is given by the velocity field 

(u, v) = (Ax+ U(Y), -AY), (3) 

which satisfies the Naviel-Stokes equations if the vorticity is given by 

U‘(y) = Berfc [ y (2Av)tl+c, - (4) 
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FIGURE 2. Sketch of the streamlines for the flow given by equations (3) and (5). The 
asymptotes of the dividing streamlines are y = f (2A/B)  x. 

where B and C are constants determined by the uniform values of the vorticity as 
y-t f 00. For example, in this case with vorticity T8,  for y-+ f 00, 

U'(y)=-Q+Qerfc [ y ( 3 1  - . 

A sketch of the streamlines is given in figure 2. The solution is one of a family of flows 
given by Jeffrey (1915). 

This flow is a simple example of convection of vorticity balanced by viscous 
diffusion. Vorticity of opposite signs is convected towards y = 0. The only viscous 
effects are in the diffusive layer of constant width 8 = O[(u/A)i] ,  centred on y = 0.  
Note also that despite the asymmetry of the streamlines about x = 0 the velocity on 
y = 0 is symmetrical about the origin. 

Just outside the diffusive layer the streamlines bounding the eddies form a finite 
angle if A = O ( 8 )  and an angle approaching zero, a cusp, if A = o(s2). This angle, or 
cusp, clearly depends on the eddy scale flow. 

Between the closing stagnation point of the eddy and points between the centres 
of the two eddies, flow near the centreline has a component towards the centreline. 
The solution ( 5 )  cannot be expected to hold for all that distance but it is reasonable 
to expect that the convection of vorticity towards the centreline helps to contain the 
width of the diffusive layer to the same order of magnitude. This diffusive layer can 
be envisaged as a thin layer of near-zero vorticity between areas of positive and 
negative vorticity. 

Once fluid'travelling near the centreline passes the centre of the eddies, both 
diffusion and convection act together to increase the width of the low-vorticity layer. 
For high-Reynolds-number flows in this situation diffusion becomes unimportant and 
the low vorticity resulting from diffusion in the rear half of the eddy is convected 
along the streamlines. But does the flow in the eddy have a high Reynolds number? 
A lower bound on the velocity, deduced from entrainment into the shear layers, is 
URe-l, so the eddy Reynolds number must be no less than O( URe-'W/u) = O( W/a).  
Thus unless W = O(a) the flow has a high Reynolds number. 

Now, consider whether Smith's (1979) model is consistent. With an eddy length 
O(aRe) and low velocities in the eddy, the vorticity in the shear layer approaching 
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FIQURE 3. (a) A sketch of the flow field necessary for Smith’s (1979) solution to be appropriate: 
(i) shear layers; (ii) diffusive layer; (iii) low-velocity eddy; (iv) wake. Fornberg’s (1980) solution 
for Re = 130 (Re = 260 in his notation): ( b )  streamlines, Fornberg, figure lO(i) (with permission); 
(c) vorticity, Fornberg, figure 11 (i) (with permission). 

the rear stagnation point is, from (l), O( U / a ) .  An O( 1) fraction of this is on the inside 
of the bounding streamline. With fluid velocities of O( URea) ,  the velocity in most 
of the eddy must be O ( U R e f / W )  = O( U/aRe).  The only way that this low level of 
interior vorticity can arise is if the O( U / a )  vorticity arriving from the shear layer is 
largely cancelled in the diffusive layer, that is, a flow like that sketched in figure 3 (a) .  
Such wholesale destruction of vorticity by viscosity does not seem to be an appro- 
priate element of a high-Reynolds-number flow. Figures 3 ( b )  and ( c )  show the 
Fornberg ’a (1980) solution for Re = 130, a flow which appears to accord with Smith’s 
solution. There is some similarity with figures 3(a) ,  and it is clear that diffusion of 
vorticity is important at this Reynolds number. 

On the other hand for the type of flow indicated by (2), and (ii) or (iii) above, with 
stronger vorticity in the eddy, the solution (5)  could well be appropriate for most 
of the rear part of the eddy since the vorticity approaching the diffusive layer would 
have nearly constant magnitude. Once fluid passes the centre of the eddy, viscosity 
is unimportant at the high Reynolds number within the eddy. All streamlines which 
pass through the diffusive layer carry little or no vorticity ; thus a portion of the eddy 
near the rear of the cylinder will be nearly irrotational. This nearly irrotational region 
in the eddy near the cylinder need have no greater flow than that needed for 
entrainment in the shear layer, as assumed by Smith. The eddy may influence the 
position and strength of the separating shear layers, but would induce no more 
significant flow at the rear of the cylinder. 

This view is consistent only if flow through the diffusive layer equals the flow 
entrained into the shear layers. The velocity near the end of the diffusive layer is O( U )  
and hence A = O( U / L )  and the total flow is 

O(U8) = o[u(?y] = O[(UVL)+]. 

This feeds a length O(L) of shear layer, supporting case (ii) since case (iii) becomes 
untenable unless L = O(a),  which is unlikely. Hence, since L = O(aRe) by the 
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FIGURE 4. (a) A sketch of the flow field for eddies with appreciable vorticity: (i) shear layers; (ii) 
main region of vorticity ; (iii) diffusive layer; (iv) low-vorticity region; (v) wake. Fornberg’s (1985) 
solution for Re = 250 (Re = 500 in his notation): (b)  streamlines, (with permission); (c) vortioity 
(with permission). 

momentum arguments outlined in Smith (1979)’ the above discussion suggests the 

L / W  = 0(1), W =  O(aRe), Q = O(U/aRe), A = O(U/aRe), 6 = O(a).  (6) 

A sketch of the flow that this discussion has led to is shown in figure 4(a). 
Fornberg’s (1985) solution for Re = 250 is shown in figures 4 (b) and (c). There is some 
resemblance : 

(a) the shear-layer vorticity merges with the eddy vorticity midway along the 
eddy ; 

(b) there is a thin diffusive layer along the symmetry plane between the two areas 
of vorticity of opposite sense. However, it appears that 6 may be smaller than O(a);  

(c) vorticity is almost uniform in the region of closed streamlines, except on those 
streamlines passing through the diffusive layer ; 

(d) the shear layers separating from the cylinder bound a region of fluid with low 
velocities and low vorticity. 

Much of Smith’s (1979) argument for wake eddies in the form of a slender ellipse 
depends on an assumption of small perturbations to the main flow field on the eddy 
lengthscale and hence small pressure variations within the eddy. The above 
considerations of vorticity and mass flow require no reference to  pressure. The orders 
of magnitude (6) for the eddy indicate pressure differences across the eddy of O(pu2). 
Fornberg’s (1985) figure 15 diagram of pressure fields shows Smith’s description to 
be a reasonable approximation at  Re = 150 but for higher Reynolds number O @ V )  
pressure changes do occur. 

following : 
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FIQURE 5. Possible inviscid limits for high-Reynolds-number flow. Sketches based on Saffman & 
Tanveer (1982) figure 1.  (a) Cylinder o(aRe) in front of main eddy. ( b )  Cylinder O(aRe) in front of 
main eddy. 

Some further support for a different, stronger flow in the eddies at high Reynolds 
number comes from calculations of the unsteady flow about a cylinder impulsively 
started from rest. Results from Son & Hanratty (1969) and Patel (1976) show that 
at the highest Reynolds numbers calculated 250 and 300 respectively, the growing 
eddy is more vigorous, wider and shorter than at Re = 100, for any given time after 
the start. 

If the flow has a solution with shear layers like figure 3(a),  figure 4(a)  or any 
intermediate configuration it is hardly surprising that unsteady solutions prevail in 
a real fluid where shear layers are unstable. 

3. The vorticity-induced translation velocity 
This section is directed to further understanding the flow as Re + a. The eddies 

grow with Re; consider them at very large Re. The cylinder is insignificantly small; 
the flow is dominated by the eddies and thus by the vorticity they contain. 
Nonetheless the eddies are moving at velocity U relative to distant fluid. The 
distribution of vorticity dominates the flow so its self-induced velocity of translation, 
V say, should equal U. 

Now, 

V = O(I'/D),  (7) 

where r is the circulation of a vortex (eddy) and is O(f2S). In  these expressions a 
is the magnitude of the vorticity, S is the area of vorticity of one sign and D is the 
distance between vortex centres. Insertion of the following orders of magnitude : 

52 = O( u/ W ) ,  s = O(L W ) ,  B = O( W ) ,  

v = O( UL/ W).  

which are appropriate for the model of figure 4 (a), into expression (7) gives 

(8) 
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With V = U this contradicts any assumption of slenderness for the eddies, supporting 
the result at the end of the previous section. 

The cylinder is at  the front of the large eddies, so that the vortex-induced 
irrotational flow field in front of the cylinder leads to an incident velocity less than 
the free-stream velocity, and hence leads to a correction to the drag coefficient and 
all other quantities related to the flow near the cylinder. For example, with shear 
layers of length O(L) ,  figures 5(a) and (b) give two alternative sketches of the 
Re + 00 limit. The eddy shape is that of two touching areas of uniform vorticity of 
opposite sense taken from Saffman & Tanveer’s (1982) correction to Pierrehumbert’s 
(1980) solution. In figure 5 (a) the distance of the sphere is O(a Re) from the front of 
the eddy and in 5 ( b )  it  is o(a Re) in front. The heavy lines indicate shear layers of 
length O(aRe) = O(L) .  For figure 5(a)  the drag coefficient would fall to zero as 
Re+ 00 whereas for figure 5 ( b )  it would fall to a finite value depending on the actual 
distance of the cylinder from the eddy. Fornberg (1985) finds C, = 0.430 for 
Re = 300; this is below the value 0.5 of the Kirchhoff solution. 

4. Conclusion 
Discussions of vorticity and mass flow in the eddies behind a circular cylinder at 

high Reynolds number lead to a description of the flow consistent with Fornberg’s 
(1985) numerical computations. Smith’s (1979) theoretical description is satisfactory 
for Re = 160 but for larger Reynolds numbers the eddies become significantly wider 
and stronger. 

The effect of large strong eddies as Re+m leads to an 0(1) change in the drag 
coefficient unless the cylinder is at  a distance greater than O(a Re) ahead of the eddies. 

I am grateful to Dr. B. Fornberg for sending me a preprint of Fornberg (1985) and 
permitting use of his diagrams, and thank Professor F. T. Smith for a preprint of 
Smith (1985). 
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